The mucolipidosis IV Ca2+ channel TRPML1 (MCOLN1) is regulated by the TOR kinase

نویسندگان

  • Rob U. Onyenwoke
  • Jonathan Z. Sexton
  • Feng Yan
  • María Cristina Huertas Díaz
  • Lawrence J. Forsberg
  • Michael B. Major
  • Jay E. Brenman
چکیده

Autophagy is a complex pathway regulated by numerous signalling events that recycles macromolecules and may be perturbed in lysosomal storage disorders (LSDs). During autophagy, aberrant regulation of the lysosomal Ca(2+) efflux channel TRPML1 [transient receptor potential mucolipin 1 (MCOLN1)], also known as MCOLN1, is solely responsible for the human LSD mucolipidosis type IV (MLIV); however, the exact mechanisms involved in the development of the pathology of this LSD are unknown. In the present study, we provide evidence that the target of rapamycin (TOR), a nutrient-sensitive protein kinase that negatively regulates autophagy, directly targets and inactivates the TRPML1 channel and thereby functional autophagy, through phosphorylation. Further, mutating these phosphorylation sites to unphosphorylatable residues proved to block TOR regulation of the TRPML1 channel. These findings suggest a mechanism for how TOR activity may regulate the TRPML1 channel.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Impaired myelination and reduced brain ferric iron in the mouse model of mucolipidosis IV.

Mucolipidosis type IV (MLIV) is a lysosomal storage disease caused by mutations in the MCOLN1 gene, which encodes the lysosomal transient receptor potential ion channel mucolipin-1 (TRPML1). MLIV causes impaired motor and cognitive development, progressive loss of vision and gastric achlorhydria. How loss of TRPML1 leads to severe psychomotor retardation is currently unknown, and there is no th...

متن کامل

Systematic Screens for Proteins That Interact with the Mucolipidosis Type IV Protein TRPML1

Mucolipidosis type IV is a lysosomal storage disorder resulting from mutations in the MCOLN1 gene, which encodes the endosomal/lysosomal Transient Receptor Potential channel protein mucolipin-1/TRPML1. Cells isolated from Mucolipidosis type IV patients and grown in vitro and in in vivo models of this disease both show several lysosome-associated defects. However, it is still unclear how TRPML1 ...

متن کامل

A small molecule restores function to TRPML1 mutant isoforms responsible for mucolipidosis type IV.

Mucolipidosis type IV (MLIV) is an autosomal recessive lysosomal storage disorder often characterized by severe neurodevelopmental abnormalities and neuro-retinal degeneration. Mutations in the TRPML1 gene are causative for MLIV. We used lead optimization strategies to identify--and MLIV patient fibroblasts to test--small-molecule activators for their potential to restore TRPML1 mutant channel ...

متن کامل

Mucolipin 1 channel activity is regulated by protein kinase A-mediated phosphorylation.

Mucolipins constitute a family of cation channels with homology with the transient receptor potential family. Mutations in MCOLN1 (mucolipin 1) have been linked to mucolipidosis type IV, a recessive lysosomal storage disease characterized by severe neurological and ophthalmologic abnormalities. At present, little is known about the mechanisms that regulate MCOLN1 activity. In the present paper,...

متن کامل

Activating mutation in a mucolipin transient receptor potential channel leads to melanocyte loss in varitint-waddler mice.

Transient receptor potential (TRP) genes of the mucolipin subfamily (TRPML1-3 and MCOLN1-3) are presumed to encode ion channel proteins of intracellular endosomes and lysosomes. Mutations in human TRPML1 (mucolipin 1/MCOLN1) result in mucolipidosis type IV, a severe inherited neurodegenerative disease associated with defective lysosomal biogenesis and trafficking. A mutation in mouse TRPML3 (A4...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 470  شماره 

صفحات  -

تاریخ انتشار 2015